Generating Sequences 8as1

Linear Sequence: Terms in the sequence increase by the same amount each time Example A: 5 7 9 11 13...

Term-to-term rule: A rule to find a term of a sequence, given the previous term Example: The term-to-term rule for Example A is +2

Position-to-term rule: The rule that allows any term in a sequence to be calculated. given its position number

Example: The position-to term sequence is: 2 x position number +3

Position Number	1	27	3	4.7	5
Term	5	2x 2+3	9	2×443	13

Example #1: The first term of a sequence is 4. The term -to-term rule of the sequence is 'subtract 3'. Write the first three terms of the sequence.

First term: 4, 1, 2

Example #2: The position-to-term rule of a sequence is: term= 4 x position number +1. Work out the first three terms of the sequence.

Position Number		17		27			37	
Term	4×	1 - +1	4.	72	+1 0	YX:	3 4	+1
		7		8		`	2	

Practice! Find the first three terms

a. First Term: 1 term-to-term rule: 'add 5'

- b. First Term: 20 term-to-term rule: 'subtract 4' -
- c. Term=6 x position number
- d. Term= position number -4
- e. First term:-3 term-to-term rule: 'subtract 6'

Finding Rules for sequences 8as1

Example A: Pattern 1

Pattern 2

Pattern 3

. . .

0 0

9 9

5 Dots

7 Dots

9 Dots

Term-to-term Rule:

+27

Position-to-term Rule:

 $\frac{2 \times pn + 3}{2(1)} = 5$ 2(1) 2(1)

try. 2pn+3 2(2)+3= 4+3=71

Find the Term-to-term Rule and work out the Position-to-term Rule

Example #1: 3,6,9,12,...,...

A. Term-to-term Rule:

+3

B. Position-to-term Rule

· Step One: Create a table with the position number, term, and multiples

1	2	3	4
3	6	9	12
3	3	3	3
	3	1 2 3 6 3 3	1 2 3 3 6 9 3 3 3

Step Two: Fill in the rule term= 3 x position number
Step Three: Check if the rule works with the first terms

Example #2: 5,9,13,17,...,... A. Term-to-term Rule:

B. Position-to-term Rule

Step One: Create a table with the position number, term, and multiples

Position Number	1	2	3	4
Term	(5)	9	13	17
Multiples of	+4	¥ (1	x4	14

Step Two: Fill in the rule term= 4 x position number Step Three: Check if the rule with the first terms

Example#3: 6,7,8,9 A. Term-to-term Rule:

4x(1)+==5)	4pn+1
4 + 1 = 5)	ιρ.,

B. Position-to-term Rule

Step One: Create a table with the position number, term, and multiples

Position Number	1	2	3	4
Term	(6)	7	8	9
Multiples of	1	2	3	4

1,4,7,10,...,...

A. Term-to-term Rule:

1x(1)+ = 6, 1pn+4

B. Position-to-term Rule

Step One: Create a table with the position number, term, and multiples

Position Number	1	2	3	4
Term	1	4	7	10
Multiples of	3	3	3	3

Step Two: Fill in the rule term= 3 x position number

Step Three: Check if the rule with the first terms

Class/Home Work: #2-5

$$1 \times (3) = \frac{1}{3} \cdot 3pn - 2$$

Using Functions and Mapping 8as3

Function: Relationship between two sets of numbers .

Three ways to represent the function

1) Function Machine:

2) Mapping Diagram: Input number map the output numbers

3) Algebraic Equation:

- · Letter "x" represents input number
- · Letter "y" represents output number

Example #1:

A. Copy and complete the table of values for this function machine

$$x \rightarrow \begin{bmatrix} x \ 2 \end{bmatrix} \rightarrow \begin{bmatrix} +1 \end{bmatrix} \rightarrow y$$

$$\begin{cases} 1 \ x \ 2 \end{cases} + \begin{vmatrix} -2 \ y \end{vmatrix} = 2$$

B. Draw a mapping diagram to show the function in part a

1:3+1-7 4x2 8+1=9

Constructing Linear Expressions 8ae3

Algebraic Expressions: Using letters to represent an unknown number

N+5

Variable: Letter used in an algebraic expression

Example #1:

Linear Expression: An expression with at least one variable ***n2 is NOT a linear expression; it is only multiplied by itself

Example #1: 5 + ↑

A) Write the number that is five more than the mystery number → 5+1/1 B) Write the number that is three times the mystery number → 3×11→31 C) Write the mystery number multiplied by Itself → N·N → N² Example #2: Victoria thinks of a number, x. Write down an expression Victoria gets when: A) She subtract five from the number $\rightarrow N-5$ B) She doubles the number and adds three -> NX2+3 > 2n+3 C) Divides the number by three and adds two $\rightarrow \frac{100}{3} + 2$ D) Adds 2 to the number and then multiplies by $4 \rightarrow (2+1) \times 4 \rightarrow (2+1)$ Class Work 1-4

White Board Practice

Deriving and using formulas 8nc10

Formula: mathematical rule that shows the relationship between two or more quantities (variables)

Derive: write a formula

Using Formula

***Use order of operations: Please Excuse my Dear Aunt Sally

Brackets (Poventhesis)
Indices (Exponents)
Division Left to Right
Addition
Subtraction Left to Light

Practice #1:

$$2-1 \times (5+3) = 2-1 \times 8 = 2-8 = -6$$

Practice #2:

Practice#3:

Like term worksheet!

Collecting Like Terms 8ae2

A Short Story:

Once upon a time there were these groups of families scattered across the country in a kingdom far, far, away. The different family groups all decided to find the other members of their family so that each group could hold a giant family reunion. Each family could identify their other family members because they all had the same last name. There was even a family group with no last name! Now let's use our math properties to help these families join up with each other for their big family reunions!

$$\frac{2x^{2} + 3xy + 3x + 6 + 5x^{2} + 3 + 4v^{2} + 2x + xy + 1}{2x^{2} + 5x^{2}}$$

$$\frac{2x^{2} + 5x^{2}}{7x^{2}}$$

$$\frac{3xy + xy}{3xy + |xy|}$$

$$\frac{3xy + |xy|}{5x}$$

$$\frac{3xy + |xy|}{5x}$$

$$\frac{3xy + |xy|}{10}$$

Numeric values and a variable

$$3+5\times n$$
 rewrite $5n+3$ (variable before) $5+n+3-2$ integer $3n-4+2$ $3n-2$

Numeric values and several variables

$$d + 5 + 2xc Rewrite 2C + Cl + 5 (alprabetical)$$

$$d + 3d + 4$$

$$4d + 4$$

$$4 + 2x^2 + 3x + 1x Rewrite 2x^2 + 4x + 4 (exponent)$$
First set of cards pg 97

Simplifying like terms

Simplify: transform an expression by writing it in a different way

Example: 2n+3 same as 2xn+3 same as 3+2n same as 3+2 x n

Which one is the same to
$$5n-3$$
? $3-5n$ or $-3+5n$ $-5n+3$ $+5n-3$

Bbrockets ()
indices/exponents

division Left to
multiplication? Right

addition Left to
Subtraction? Right

Expanding Brackets

Expand: multiply each term inside the brackets by the term outside the bracket (Distributive example with Integers:

4(8+3) Using BIDMAS

4(8+3) Expanding Brackets

Example With Variables:

Example with several expansion

 $4(2x+3x^2)-x(6+x)$

Practice:

a) 8(x+5)-3(2x+7)

b)a(2b+c)+b(3c-2a)

c) 2y(y+5x)+x(3x+4y)

With equations that equal something other than 0

With Equation that equal a variable

Arithmetic with Integers

Integers:

- · Whole numbers
- · Negative or positive
- · Includes zero
- · Can be displayed in the number line

Adding and subtracting positive and negative integers

How it works:

Same signs add and keep

⊕ (4:3 = -7 5+2= -7 ©

Different signs subtract

Keep the sign of the bigger number

Then you will be exact

Real life Application:

You owe four dollars and you spend three more now you owe _____ dollars
You have five dollars and you get two more now you have _____ dollars

You owe four dollars but you pay three now you owe _____dollars
You have five dollars but you buy something for two now you have ____dollars

White Board Practice

Multiplying and Dividing Negative and Positive inters

SAME sign= Positive answer 4x4=16 -2x-2=4
Different sign=Negative answer 4x-4=-16 -2x2=-4

Cheat Sheet-Term Rules 8nc9

. Write products without the multiplication sign	2×n 8 x n= 8n
Write the number before the letter	2n NOT n2 except in condition
Generally, write terms with letters before terms with numbers	2n+4 NoT 4+2n
Generally, write terms in alphabetical order	2c+2b-> 2b+2c
When a term has more than one letter, write them in alphabetical order	a.c.b-acb-abc
Write negative terms after positive terms	4-2a NOT -2a+4

exponents take

Simplify with like terms, Example:

$$2ab + ab - 5ab \rightarrow -2ab$$

$$3ab - 5ab \rightarrow -2ab$$

$$2y + 6y^{2} - 3y^{2} - 10y \Rightarrow 2y - (0y + 6y^{2} - 3y^{2} - 7 - 8y + 3y^{2})$$
Second set of cards (pyramid) pg.97

Quiz 8as3/8ea3

1. Copy and complete the table of values for the function machine

$$x \to \div 2 \to +10 \to y$$

X	2		10	
Y	9	13		25

- 2. Write the formula for the function machine in problem 1
- 3. Work out the rule for the function machine

4 2 8 4 18 9

Denise thinks of a number, n

Write an expression for the number she gets when she:

- 4. Multiplies the number by 2 then adds 7
- 5. Divides the number by 3 then adds a 6

WRITING EQUATIONS

Review: Star the ones with equal sides

Construct: use information to write a formula

Example #1:

The diagram shows shapes. Work out the values of x and y.

Check answers by Substitution!